Synthesis of genetically engineered protein polymers (recombinamers) as an example of advanced self-assembled smart materials.
نویسندگان
چکیده
In this chapter, we describe two methods for bio-producing recombinant repetitive polypeptide polymers for use in biomedical devices. These polymers, known as elastin-like recombinamers (ELRs), are derived from the repetition of selected amino acid domains of extracellular matrix proteins with the aim of recreating their mechanical and physiological features. The proteinaceous nature of ELRs allows us to make use of the natural biosynthetic machinery of heterologous hosts to express advanced and large polymers or "recombinamers." Despite the essentially unlimited possibilities for designing recombinamers, the production of synthetic genes to encode them should allow us to overcome the difficulties surrounding bioproduction of these non-natural monotonous DNA and protein sequences. The aim of this work is to supply the biotechnologist with fine-tuning methods to biosynthesize advanced self-assembled smart materials.
منابع مشابه
Elastin-Like Recombinamers As Smart Drug Delivery Systems.
BACKGROUND Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This...
متن کاملEngineered protein cages for nanomaterial synthesis.
Self-assembled particles of genetically engineered human L subunit ferritin expressing a silver-binding peptide were used as nanocontainers for the synthesis of silver nanoparticles. The inner cavity of the self-assembled protein cage displays a dodecapeptide that is capable of reducing silver ions to metallic silver. This chimeric protein cage when incubated in the presence of silver nitrate e...
متن کاملEngineered clathrin nanoreactors provide tunable control over gold nanoparticle synthesis and clustering
The use of biomolecules to direct nanomaterial synthesis has been an area of growing interest due to the complexity of structures that can be achieved in naturally occurring systems. We previously reported the functionalization of self-assembled clathrin protein cages to enable synthesis of nanoparticles from a range of inorganic materials. Here, we investigate the ability of this engineered bi...
متن کاملGenetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein
Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...
متن کاملSupramolecular assembly and small molecule recognition by genetically engineered protein block polymers composed of two SADs.
Genetically engineered protein block polymers are an important class of biomaterials that have gained significant attention in recent years due to their potential applications in biotechnology, electronics and medicine. The majority of the protein materials have been composed of at least a single self-assembling domain (SAD), enabling the formation of supramolecular structures. Recently, we dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in molecular biology
دوره 811 شماره
صفحات -
تاریخ انتشار 2012